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Abstract—The analysis of perturbed motion is often very important for studying the progress of
strain and stress in viscoelastic bodies. The authors intend to provide a variational formulation of
the problem as an alternative to the differential formulation used to date, by solving the so-called
inverse problem of the calculus of variations. This paper shows how the operator ruling the problem
can be made symmetric by using a convolution bilinear form to obtain four functionals which are
stationary at the solution of the differential problem. In conclusion, for example, the two-dimen-
sional equations of the perturbed motion of a viscoelastic thin plate, are derived from the stationary
condition of the three-dimensional functional.

1. INTRODUCTION

The stability of motion of a viscoelastic body is usually analysed by studying the perturbed
motion following a variation of data (disturbance). The problem, formulated under the
assumptions of small displacements and disturbances, consists of a system of linear integro-
differential equations (Bolotin, 1969), expressing the local equilibrium conditions at every
instant, and related boundary and initial conditions. This formulation usually involves a
number of problems.

In many structural problems (e.g. rods, plates or shells), the three-dimensional equa-
tions of the continuum are not dealt with but it is often preferred to simplify the unknown
fields by introducing suitable constraints or by choosing to neglect some terms regarded as
less meaningful. In this case, writing the field equations, especially the boundary conditions,
may be particularly difficult if one starts from the strong formulation previously described,
while it becomes much easier if one starts from a variational formulation, as demonstrated
in ¢lastic problems where a variational formulation related to the total energy is available.

The second problem is related to the approximation of the solution. This can be sought
by means of step-by-step integration in time or numerical Laplace transforms. These
methods are very demanding and, furthermore, the Laplace transform method can be
applied only to the case of fundamental motion with stress constant in time. Even in this
case, a variational formulation would be desirable, since it permits applying classical
approximation methods (Dall’Asta and Menditto, 1993).

The authors therefore intend to deal with the so-called inverse problem of the calculus
of variations by seeking one or more functionals which are stationary at the solution of the
integro-differential equations describing the perturbed motion.

However the characterization of this functional is not a trivial matter and cannot be
obtained in the classical way because the operator ruling the problem is not symmetric with
respect to the classical bilinear form derived from the scalar product. The problems ruled
by non-symmetric operators resisted variational formulation for a long time and the first
results are due to Gurtin (1963, 1964) and to Morse and Fenshbach (1953), with reference
to particular problems. A clearer outlook on the problem was finally obtained by Tonti
(1973) who focused the question on the meaning of the operator symmetry and on the fact
that this property depends on the particular bilinear form.

In this paper the authors investigate the possibility of obtaining a variational for-
mulation by means of the convolution bilinear form. This bilinear form was previously
used for the classical linear dynamic viscoelastic problem by Leitman (1966) whose success
was principally due to the particular nature of the viscoelastic operator. In this case, the
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presence of stress state due to fundamental motion makes the considered operator more
complex and substantially different. This creates some difficulty and it can be shown that
symmetry is preserved only if the stress history satisfies a symmetry condition. However,
this limitation can be by-passed considering a time interval which is twice as long and, for
stress varying in time, the difficulties related to the Laplace transform method can be
avoided.

In this paper four different variational formulations are proposed: three of these
involve relaxation type viscoelastic material and one involves creep type viscoelastic
material. The latter can be particularly useful in practical applications because the consti-
tutive laws derived from experimental data are often expressd by means of creep laws.

In conclusion, as an application example, the problem of perturbed motion of thin
plates is derived from the proposed variational formulation of the three-dimensional con-
tinnum. The usual Kirchhoff assumptions permit obtaining a two-dimensional problem
and determining the boundary conditions, in which the coupling between the Kirchhoff
shear force and fundamental motion stress is shown.

2. VARIATIONAL FORMULATION

Let Q be a bounded Kellog-regular region occupied by a viscoelastic body in the three-
dimensional Euclidean space, dQ its boundary and Q its closure ; let [0, 7] be a time interval.
The displacement vector at the point xeQ at the instant € [0, 7] is denoted by u and the
symmetric strain and stress tensors are denoted, respectively, by E and S. It is assumed that
the process [@, E, S], solving the linear viscoelastic problem with the assumptions of small
displacement and stain, is known.

The infinitesimal stability of the process is usually analysed by studying the perturbed
process [ii, E, S} with ii = ii+u, E = E+E, S = §4S, occurring in the presence of the data
f=Tf+f (forces per unit mass), § = g+g (presented displacements on the boundary),
h = h+h (prescribed tractions on the boundary), @, = i,+u, (initial displacements),
¥, = ¥o+V, (initial velocities), and by linearizing the equilibrium equations, assuming that
[Vu] « ||Vi] « 1 (Bolotin, 1964, 1969). The unknowns [u, E, S] can be determined by
solving the differential problem governed by the following field equations:

Vu—E=0 on Qx(0,7), ()
G®E-S=0 on Qx(0,7), (2a)
or, alternatively
J®S—E=0 on Qx(0,7), (2b)
and
—div(S+VuS) +pii = pf on Qx(0,7), 3)

and by the boundary and initial conditions :

u=g on 0Q,x[0,T], 4)
(S+VuS)n=h on Qs x [0, T], (5)
u,_o=u, on Qxt=0, (6)
U,_o=v, on Qxt=0, (7

where V denotes the gradient of a vector and V, its symmetric part, G and J the four-order
tensors describing the kernel of the viscoelastic constitutive behaviour mapping symmetric
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tensors into symmetric tensors, ® the Boltzmann operator,f div the divergence operator,
the superimposed dots the temporal derivatives, dQ, and dQ; two disjoint subsets of the
boundary (6Q, N 6Q = 0) such that 8Q, U dQg = JQ, n the normal outward on 6Q, p is a
positive function describing the mass density ; T, g, h, @,, ¥, are assigned functions forming
the problem data. If the constitutive law is defined by means of eqn (2a), the material is
said to be viscoelastic of relaxation type, otherwise the material is viscoelastic of creep type,
eqn (2b).

The classic problem is usually posed on spaces of continuous functions. In this
paper it is more generally assumed that the data arc square-integrable in their domain
and the differential equations must be satisfied almost everywhere (a.e.). It is also
assumed that the unknowns are defined in the following sets :f ue U= H*((0,T) ; H'(Q)),
SeX = {SeL*((0,7); L*(Q)): div Se L*((0, T); L*(Q))}, and E€X.

This is a linear problem in the form:

La=25, ®

where L : D(L) — R(L), D(L) is a subset of a Banach space A and R(L) is dense in a second
Banach space B.

The authors intend to deal with the so-called inverse problem of the calculus of
variations, by seeking a functional # (a) : D(L) -» R which is stationary at the solution of
the problem (8), i.e.

0F(a;0a) =0 VdacA<=La=>b. 9

This is a classical topic of applied mathematics and a historical review can be found
in Tonti (1984). In the linear case the following result can be shown: if a form
{a,b): A x B — R is bilinear, continuous and non degenerate, i.e.

{a,b> =0 Vacd=b=0, (10a)
{a,b) =0 VbeB=a=0, (10b)

and if the linear operator L is symmetric in the sense that it satisfies the condition :
{ay,La,y =<a,,La,> Va,a,eA, (n
then the functional sought exists and possesses the following form
Fla) = 1/2{a,Lad>—{(a,b>. (12)

The examined problem does not permit a variational formulation by means of the
classical procedure in which the data space and the unknowns space are related through
the usual bilinear form derived from the scalar product. In fact, for spaces of vector valued
functions this form assumes the following expression :

tThe Boltzmann operator is the linear operator characteristic of the viscoelastic constitutive law, as
introduced by Leitman and Fisher (1973). This is defined by the following equality:

G(1) ® E()) = GOEW) +G(0) » E() = GO)E() + f 'G(t—)E() dr.

where the components of G are absolutely continuous functions.
i L? denotes spaces of square-integrable functions and H" spaces of functions that possess partial derivative
in L2, up to the order ».
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T
{a,b) = J‘ j a(x, ) -b(x, 1) dQ dz, (13)
o Jo

and it can be shown that the operator ruling the perturbed motion problem does not satisfy
the symmetry requirement of eqn (11). A variational formulation can be obtained by
adopting a convolution bilinear form, under suitable assumptions. This bilinear form has
the following expression :

{a,b) =Jj a(x, 1) - b(x, T—«r)det:Ja*bdQ. (14)
o Jo )

and possesses the properties required in eqn (10) (Yosida, 1980) but, contrary to the scalar
product, it is not positive.

Rather than demonstrating the symmetry relation of eqn (11) and building up the
functional by means of egn (12), the authors have preferred to demonstrate the result
sought by following the classical procedure which consists in showing that the stationary
condition of a particular functional are the same as the equations of the differential problem.

Theorem. The differential problems of eqns (1), (2a}, (3), (4). (5), (6), (7) is assigned.
If the tensor G(x, 7t is symmetric and S(x,t) = S(x,7—¢) a.e. on Qx (0, T) then the

solutions of the differential problem coincide with the stationary points of the following
functional :

vl.

jVuS*VudQ
2 )

1
F,E,S) =j (Vsu—E)*SdQ+§JG®E*EdQ+
Q

+%in)*ﬁdﬂ~f pf*udﬂ+j (g—u)*(S+Vu§)nd6§23~j h=udoQy
o 0 a0, .

Qg
+j’ pluf,_o~—uy) 'ﬁi:=TdQ—J;) pvyrul,_rdQ. (15)
o

Proof. Part (a). It will be shown that a process [u, E,S] satisfying the differential
problem makes the functional stationary. The differential with respect to a generic variation
[ou, OE, 8S] has the following form:

6F (0, E,s;6un, 0K, 88) = j’ Vséu*SdQ—j 5E*SdQ+j‘ (Vau—E) 685 dQ
o o o

-{—1 G@&E*EdQ+~1~~JG@E*éEdQ+~!JV5uS*VudQ
2 0 2 {93 2 Q2

+}MJ\VuS*VéudQ+j p&*éixdﬂ—f pfx SudQ
2 o Q Q2

+J‘ dux(—S)n d(?Qﬂ—J dus (—VuS)n d@Qﬂ—j (u—g) * (—6S—-VéuS)n doQ,

& 2

——J h*5\1déQs+Lp5ut,=o'ﬁ§,=TdQ+j p(ui,zo—ug)'6&!,=TdQ~J;pvo'5u},=TdQ.
g (o}

(16)

+ G satisfies the relation A+ GB = B+ GA for every symmetric tensor pair A, B, a.e. on (0, T} x Q.
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By means of a change in the integration variable and Heaviside function, the following
can be demonstrated [see Tonti (1973) for the uni-dimensional case]:

G ®IE+E =G ®ExJE, (17
Thanks to the symmetry of S:
Vu- VéuS = tr (VuS™V éu) = tr (VuSV'éu) = VuS - Véu, (18)

can be written (tr = trace) and, for the assumption S(x,7) = S(x, T—1), the following
equation holds:

VouS * Vu = VuS * Véu. 19

In conclusion, the regularity assumptions permit applying the Green formulas:

Sn * du dQ +j Snh * ou dQ, (20)

o0

JS*V@udQ:j —~divS*5udQ+J
0 o

o0,

u

j VuS » Véu dQ = f —div (VuS) * du dQ+J VuSn x du doQ, +J VuSn * du doQ;,
fo) 0 aQ,,

g

@1
j pu * o dQ) = j pii * ou dQ—i—J pf,—o" 5u|,=TdQ—j pal,_r-oul,.odQ, (22)
;¢ Q Q Q
and the differential can be rewritten in the following form:

0% (w,E,S; 0u,0F, S) = f (Vu—E)=*dS dQ+J (G®E~-S)®JIEdQ
0 o

]

+ | (=div (S+VuS)+ pii— pf) « ou dn+f (u—g) * (— &S — VouS)n doQ,
o 2,

Y

~

+| ((S+VuS)n—h) *du dGQS+Jp(uI,=O—u0)'51'1|,=TdQ
2

Jé
~

+ QP(ﬁ|r=0—V0)'5“|t=TdQ, 23)

LY

which is null if [u, E, 8] satisfies the differential problem.

Part (b). Vice-versa, if the functional is stationary at [u, E, S] then this process satifies
the eqns (1), (2a), (3), (4), (5), (6), (7).

According to the form that the functional assumes in eqn (23) and because of the
property of p and of the bilinear form [eqns (10}], it can be directly concluded that if the
differential 8% is null for every variation [du, OE, 3S] then the former terms in every integral
must be null, i.e. eqns (1), (2a), (3), (4), (5), (6), (7) are satisfied. 0

The proof is based on the two fundamental assumptions of symmetry for G and on
the condition §(x, £) = 8(x, T—1).

The symmetry condition for the tensor G at every ¢ is not thermodynamically necessary
{Day, 1971 ; Fabrizio and Morro, 1988), but it is generally accepted in the formulation of
viscoelastic problems (Gurtin and Sternberg, 1962 ; Gurtin, 1963 ; Leitman, 1966 ; Rionero
and Chirita, 1989).



252 A. DALL’Asta and G. MENDITTO

The condition S(x, 1) = S(x, T— ) is equivalent to requiring the symmetry around 7'/2
and this condition holds in the majority of engincering problems, in which the actions
involving viscoelastic phenomena are constant. If S(x,7) does not vary symmetrically
around 77/2, the problem can be by-passed by studying the motion in the interval [0,27]
under a stress S*(x, 1) such that:

S*(x,1) =S(x,1) on Qx[0, T}, (24a)
S*(x,n = S(x,2T—1) on Qx(T,2T]. (24b)

Although the problem of existence is not analysed in this paper, it is useful to note
that by following the above procedure, the problem studied differs from the primary
problem. However, the existence of the transformed problem ensures the existence of the
solution of the primary problem if the principle of determinism holds.

It must be observed that the bilinear form is not positive and the condition 6% =0
simply denotes a stationary condition and not a minimum.

In the proposed formulation a general case has been considered but simplification is
possible. In particular, in structural engineering topics it is often possible to neglect the
dynamic terms involving velocities and initial conditions when the relaxation time of the
material is much greater than the fundamental period of free-vibration of the structure
{Hoff, 1958).

3. ALTERNATIVE VARIATIONAL FORMULATION

As in the elastic-static problem, # (u, E,S) can be referred to as the Hu-Washizu
functional, since it depends on all the three unknown fields which vary independently from
each other. Other functionals can be derived by introducing suitable constraints on the
unknowns.

In fact, assuming that the tensor field S identically satisfies eqn (2a) (G® E~S = 0),
the following functional can be obtained :

v (wE) = Vsu*G®EdQ-£ G®E+EdQ+| (g—w*(G®E+VuS)ndoQ,
Q 2 o,

!
+lfVuS*VudQ+—fpﬁ*ﬁdQ~Jpf*udQ»«f h*u doQg
2 9] 2 Q Q

Qg
+Lp(ﬂi::o—uo)'ﬁlf:rdQ—Lp%'ui;ﬂdﬂ? (25)

or, vice-versa, assuming that E identically satisfies eqn (2b) (J ® S—E = 0), another func-
tional can be derived with the following expression :

1
T (u,S)= f VauxSdQ— EJA SxJ @SdQ-{-f (g—u) * (S+VuS)n doQ,
Q i#3 o0,

_ 1
+1jVuS*VudQ+~Jpl’1*ﬂdQ——Jpf*udeJ h +u doQ
2 Ja 2 jo o o0

+j p(ui,zo-uo)'ﬁt,:rdﬁ—vaﬂ-uawdg. (26)
Q

In this case ¥ (u, E) and 7 (u,S) can be referred to as Hellinger—Reissner functionals.
In particular, the latter is of remarkable operative interest since the viscoelastic constitutive
laws derived from the experimental data are more frequently posed in the form of eqn (2b)
rather than in the form of eqn (2a).
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A functional similar to the total potential energy of the elastic case can be derived from
eqn (25) by constraining E further so as to satisfy eqn (1), and constraining u in a subspace
of functions satisfying the boundary condition of eqn (4) (u = g) on the boundary portion
0Q,. In the end, a functional defined for a generic field of admissible displacements u, is
obtained in the following form:

1 1 1 .
&(u) =§J G@qu*VsudQ+ELVuS*VudQ—t-ELpu*udQ
Q

—f pf*udQ—f h=s<ud6QS—}-J~ p(u|,=0—u0)'ﬁ|,=TdQ—j pvoru|,-rdQ. (27)
0 oy 0 4}

It must be remarked that only a formal analogy with total potential energy exists,
because &(u) does not have a particular physical meaning and it is not extreme at the
solution.

4. APPLICATION TO THIN PLATES

As an example of application, the field and boundary equations of perturbed motion
of a thin plate are derived from the variational formulation of the three-dimensional
continuum.

Let {e,;e;} be an orthonormal basis (x = 1,2) and (x,; x;) the co-ordinate system. It
is assumed that the spatial domain Q, on which the problem is defined, coincides with the
region I x (—h/2, h/2), where I denotes a regular domain on the plane x; = 0 with normal
n = n.e, and h the thickness. Dirichlet conditions are posed on 8Q, = dI", x (—h/2, h/2) and
Neumann conditions on 0Qg = 0's x (—h/2, h/2).

Kirchhoff hypotheses are assumed ; in the linear strain theory they are equivalent to
assuming S;3; =S'e;®e; =0 and the internal constraints E,; =E-e,®e; =0. The
simpler constitutive law compatible with the assumed kinematic constraints is that of the
transversally isotropic material and furnishes the active stress by means of the functions
u(1), A(H) and A'(?), leading to the following expressions (Podio-Guidugli, 1989)

S=2U@®E+i® E L)L +1 ® E L)L, (28)

where I, denotes the metric tensor e, ® e, and I, denotes e, ® e;. The stress components
S,3 = 8-e,®e; have a reactive nature and are not involved in the functional writing
because their correspondent strain components E, ; are null, while the condition S, ensures
that £;; = E-e; ® e; = 0. This leads to the following displacement field u, for the considered
geometry :

u= (v, —x;w,)e +vs—x3w,)e,+we,, (29)

where v, and w denote the displacement components of the middle surface with respect to
the basis and are clearly functions of x, only. The following expressions are obtained for
the strain tensor:

E=Vu=(v,;—x3w)e; ®e +[1/2(v;,+0v51) —x3w 12)(e, Rer+e, Re)
+(v22—x3w5)e; ® ey, (30)

and the displacement gradient :

Vu=Vau+1/2(,,—v,,)e @e,+e,De,)+w (e; Re, —e, ®es)
+W’2(e3®ez—e2 ®e3). (31)



254 A. DaLL’AsTA and G. MENDITTO

The calculation is now carried out by considering only the la8t two terms of eqn (31),
taking into account that, in stability problems, the rotations around e, prevail with respect
to the rotation around e, and the strain terms.

The case of fundamental motion producing only a plane state of stress (S,; = S35 = 0),
constant in thickness and in time, i.e. S = S(x|, x,), is considered. It is assumed that the
material characteristics can vary with respect to x,, i.e. u = u(x,; 8 and 1 = A(x,;1).

The displacements v,, w can now be assumed as unknowns and the problem can be
formulated by means of the functional & defined on admisible displacement fields, obtaining
the following:

1
E(v,, w) = 2J;h[(2ﬂ+l) ® (V) %01 +022%022)F2A® 0, %0,

Tu® (V1 2%0,2+20, %0, +vy *0,,)]dl

1{ A
+ Eﬁﬁ[(zﬂ-f'/l) ® W kW FWa kW) F2A@ (W * W) +4u® (W, xw,,)]dl

| _ _ _
+§j ALS w  +w +28 1w xw o+ Sow, xw,) dr—j h(f *w]dl, (32)
T r

where the disturbance is formed by a force per unit volume f(x,)e; constant vs x;, the
dynamic terms have been omitted and the integration on the thickness has been carried
out. At this point the stationary condition é&(v,, w; dv,, dw) = 0 can be used to solve the
problem in its weak form.

The strong form of the problem can be derived from the stationary condition which,
by applying the Green formulas, can be written as follows:

_J‘ AIQu+A) ® v, 1 +A® vy5], + [ ® ()2 +031)] 2} x00, dlT =0 Voo, (33a)
.

—J‘h{[l‘@)(02.1+U1.2)],|+[(2,“+)~)@Uz‘z'f‘/l@l?n,n].z}*évzdr=0 Y év,, (33b)
-

»

R{{Qu+2A) @ v, +A® vy,]n + [ ® (01, +021)]n2} %00, dOT, =0 Vv, (330

Jlg

r

M{u® (o) +0,.2)In +H[Qu+A) B v+ A® vy Jny} %00,doT, =0 Vv, (33d)

JTg

ud h';
{E [AU® AW+ Qu®w ) i +Cu®w ) 22+ Gu®@w j3) 2]
a

+AIS w.) +(Sw )+ (Siawy), +(§22W,2).2]}* owdl = ‘[_hf*aw dI' Véw,

(33¢)
J- %{[(2,u+i)@M"‘]l'{’I{@W.zz]nl+[2ﬂ®w.2|]n2}*5W.[dars V5W| (33f)
Tg
3
f % {Ru®w i dn +[Qu+1) ®wan+i®w, ln} xdw,ddls Vow, (33g)
org
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3
J {“‘ %[[(2ﬂ+)v) @w i +A@wo] +2u®wa]sn,
o s

K < .
12 MRu+D) ®wap+A®@w ]2+ Rue® w o) Jna +AS 1w, +Sawa]ny

+h[S, W, +§22w‘2]n2} *owddly Yéw. (33h)

Only conditions (33e), (33h) are affected by terms related to S while eqns (33a—d)
furnish the classical thin plate equilibrium equations on the plane x,—x, in the case of
homogeneous data. Under suitable assumptions on u and A (thermodynamic compatibility),
this second problem is well posed (Fabrizio and Lazzari, 1991) and it can be concluded
that the perturbed motion is described by the function w only, while ¢, and v, are null.

The variations dw, dw |, ow , cannot be independent of each other in the boundary. In
particular, the derivative d,0w in the direction of the boundary normal and &,6w in the
direction of the tangent, can be introduced by the following equations:

ow | = 0,0wn, —3,0w n,, (34a)
ow , = 0,0wn, +0,0w n,. (34b)

The substitution of the partial derivatives in the previous conditions permits deriving
the problem in the following differential form :

3

h
E[A(A @AW+ 2@ w )11 +@u® W, 5) 12+ QU@ W s,) ]

+h[(S w )+ (S 1w )+ (S 1ow)  +(Sawa) )l =hf onT'x(0,T), (35a)
Qu+A) ® (w ni+wnd)+A® (w3 +won)+4u @ w onn, =0
on s x(0,T), (35b)

3 3

h h ,
“1 HRu+ D) ®w  +A@wy]  +2u® wylLdn — 3’2‘[{(2#‘*‘4) ®w,;

+A@®w il +Rp @ w o) dna+hIS) w + 8w aln + RIS w, + 8w n,
3

h
- T‘Z‘az[zﬂ ® [(war—w, |)”1"2+W.|2("%““n%)]] =0 on lgx(0,T), (35¢)

where the stress § of the fundamental motion affects the field equation (35a) and the
Neumann boundary condition related to Kirchhoff’s shear force (35c¢).

The equations of the elastic case can be obtained if u(r) and A(¢) are constant in time.
In this case the more usual stiffness parameters E (elastic modulus) and v (Poisson
coefficient) can be used, taking into account that, for the material constrained as previously,
the two relations E = 4u/(A+ ) and v = A/(A+2u), hold.
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